検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 5 件中 1件目~5件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

核設計基本データベースの整備(XII) -FCAX-1実験解析及び炉定数調整計算による整合性評価-

横山 賢治; 沼田 一幸*; 石川 真; 飯島 進*; 大井川 宏之*

JNC TY9400 2000-006, 162 Pages, 2000/04

JNC-TY9400-2000-006.pdf:4.57MB

高速炉の設計精度の向上を目指して、核燃料サイクル開発機構(旧動力炉・核燃料開発事業団)では、これまでにJUPITER実験解析の結果を反映した統合炉定数を作成し、大型炉心の核設計精度の大幅な向上を達成する見通しを得ている。現在、核燃料サイクル開発機構は引き続き、更なる精度向上と信頼性の確保を目指して、最新の研究成果を反映し、JUPITER実験以外の積分データの整備を進めている。その一環として、サイクル機構と原研は共同研究として、平成9年度から平成11年度にかけて、日本原子力研究所のFCA実験データの整備を行った。これまでに、FCAXVII-1炉心の臨界性、炉中心反応率比、Naボイド反応度価値、238Uドップラ一反応度価値の解析を行っており、本報告書では、サイクル機構の解析手法を用いたFCAX-1炉心の臨界性C/E値の評価、及び、感度解析の結果を報告する。また、FCAXVII-1炉心のNaボイド反応度価値については、原研の解析手法による結果とサイクル機構の解析手法による結果に有意な差が見られていたので、感度解析を用いた詳細な検討を行った。この結果、実効断面積作成手法の違いがNaボイド反応度価値の解析結果に差を与えていたことが分かった。更に、今回整備されたFCA炉心の実験データとこれまでに整備されてきたJUPITER炉心の実験解析を用いた炉定数調整計算を行い、両炉心の実験解析結果の炉物理的整合性評価を行った。

報告書

核設計基本データベースの整備(XI) -高速実験炉「常陽」MK-I性能試験・運転データ解析--

横山 賢治; 沼田 一幸*

JNC TN9400 2000-036, 138 Pages, 2000/03

JNC-TN9400-2000-036.pdf:10.16MB

高速炉の設計精度の向上を目指して、核燃料サイクル開発機構(旧動力炉・核燃料開発事業団)ではこれまでにJUPITER実験解析の結果を反映した統合炉定数を作成し、大型炉心の核設計精度の大幅な向上を達成する見通しを得た。現在、核燃料サイクル開発機構では、引き続き、更なる精度向上と信頼性の確保を目指して、最新の研究成果を反映し、JUPITER実験以外の積分データの整備を進めている。本報告書では、高速実験炉「常陽」の積分データ整備の一環として、「常陽」MK-I炉心で測定された性能試験データや運転データに対してC/E値の評価及び感度解析を行った。解析対象とした核特性は、臨界性(最小臨界炉心)、Naボイド反応度、燃料・ブランケット置換反応度、燃焼係数である。JUPITER標準解析手法に基づくC/E値評価を行った結果、臨界性、燃料・ブランケット置換反応度については、解析値と測定値は良い一致を示すことを確認した。一方で、Naボイド反応度については、解析値が過大評価傾向であることが分かった。また、燃焼係数については、各運転サイクル間でC/E値のばらつきが大きくなった。今後、測定誤差の観点から詳細な検討が必要であるが、統合炉定数のための積分データとして利用できる見通しを得た。更に、臨界性、Naボイド反応度、燃料・ブランケット置換反応度に関して感度解析を行い、「JUPITER実験のZPPR-9炉心の感度係数と比較し、「常陽」MK-I炉心の特徴を感度係数の面から明らかにした。

報告書

Analysis of the Rossendorf SEG experiments using the JNC route for reactor calculation

Dietze, K.

JNC TN9400 99-089, 20 Pages, 1999/11

JNC-TN9400-99-089.pdf:0.66MB

核燃料サイクル開発機構の炉心核特性解析手法JENDL-3.2/SLAROM/CITATION/JOINT/PERKYを用いて、ルッセンドルフ研究所の高速・熱中性子炉心RRR/SEGで行われた積分実験の解析を行った。このルッセンドルフの実験の一部として、中性子束及び随伴中性子スペクトルの異なる5つの体系において、純粋な核分裂生成物及び構造材についてのサンプル反応度の測定が行われた。この実験では、中性子捕獲や散乱の効果に対して大きな感度を持つような随伴中性子スペクトルとなるよう設計がなされている。今回の解析で得られた中性子スペクトル及び随伴中性子スペクトルは、以前に欧州解析手法JEF2.2/ECCO/ERANOSにより解析された結果と良く一致した。また、炉中心のサンプル反応度のC/E値についても検討している。両解析手法による結果には差が見られ、これらの差は、核データライブラリ、計算コード、自己遮蔽効果の取扱方法の違いにより生じたものである。誤差範囲を超えて違いの見られる結果についての議論も行っている。

報告書

Super-Phenix Benchmark used for Comparison of PNC and CEA Calculation Methods,and of JENDL-3.2 and CARNAVAL IV Nuclear Data

Hunter

PNC TN9410 98-015, 81 Pages, 1998/02

PNC-TN9410-98-015.pdf:3.15MB

本研究は、CEAから提供されたSuper-Phenixの起動試験炉心ベンチマークデータを動燃が解析した成果であり、動燃-CEA共同研究の一環として実施されたものである。動燃によるSuper-Phenixの解析結果を、CEAの解析結果及び実験測定値と比較したところ、CEAのC/E(解析/実験)値が系統的な径方向依存性を示すのに対して、動燃のC/E値はその30$$sim$$40%しかなく非常に小さいことが判明した。CEAが原因を検討した結果、両者のC/E値径方向依存性の違いの主たる要因は、使用した核データセット(JENDL-3.2CARNAVAL-IIII)にあると結論された。本検討の最終段階として、動燃はこの2種の核データセットの違い詳細に検討するために、感度解析を実施した。中性子束分布計算で用いた解析コードは2次元RZまたは3次元Hex-モデルのCITATIONとMOSESコードである。JENDL-3.2CARNAVAL-IIIIの違いに対する感度解析は、SAGEPコードを用いて行われた。ここでは、両者のエネルギー構造を統一するための縮約操作を施す必要があり、また、両者の核断面積の定義には幾つか食い違いがあることが分かった。感度解析の結果、JENDL-3.2とCARNAVAL-IIIIのC/E値径方向依存性の違いの原因は、少数の核種による寄与であることが判明した。両者の核データの比較結果は以下のとおりである。核分裂当たりの中性子発生数$$nu$$の違いは小さい($$<$$5%)。低エネルギーでの核分裂断面積差は大きい($$<$$30%、代表値$$<$$10%)。下方散乱断面積は相対差としては大きい違いがあるが、絶対値の差は自群散乱と比較すれば無視できる。自群散乱の相対差は75%程度まであり、一般には20%以下である。捕獲断面積の違いは非常に大きく、30$$sim$$200%まで見られた。

報告書

修正中性子源増倍法の適用性検討(3)

not registered

PNC TJ2222 94-001, 264 Pages, 1994/03

PNC-TJ2222-94-001.pdf:9.07MB

高速原型炉もんじゅの炉心性能試験で実施される制御棒等の反応度価値測定の測定精度を向上させるため、修正中性子源増倍法(以下、MSM法)について中性子輸送計算体系・方法の検討、及び補正係数の作成等を行い、その適用性と精度の検討を実施した。本年度は、前年度の課題である輸送計算の計算境界付近での中性子束計算精度の向上を図り、広範囲の反応度について予測精度評価を行った。さらに検出器応答関数の整備を行い、制御棒パターンや中性子源位置による検出器応答の評価を行った。まず、R$$theta$$体系の$$theta$$方向境界付近での中性子束計算精度の問題に関して、360$$^{circ}$$ R$$theta$$体系では、中性子束の収束誤差を0.1%以下にしないと境界付近の中性子束を数十%も過小評価することがあることが判った。次に、炉内・炉外NIS検出器の応答関数を1次元随伴中性子束計算により詳細に求め、燃料末装荷の炉心およ150体装荷炉心での検出器応答の実測値と比較した。炉内NISでは計算値は過大評価、炉外NISでは過小評価となる傾向があるが、炉心の状態が変わってもその検出器間のC/E値の比はほぼ一定であり、燃料未装荷時の検出器応答の実測値と計算値の比から、燃料装荷時の検出器応答も較正できる可能性があることが判った。これ以前の作業までに開発したMSM法の補正係数計算手法を、燃料装荷段階の未臨界炉心に適用し、反応度の予測を試みた。燃料装荷体数が124体までは、検出器間の反応度予測値のばらつきは小さいが、150体の場合には極端にばらつきが大きくなった。これは、補正係数計算に用いている中性子束分布計算方法の中性子倍増の計算精度に起因するもので、臨界に近づき増倍中性子が検出器応答に占める寄与が大きくなった場合は、基準炉心と対象炉心の反応度の比を実際に近く求められるような中性子束分布計算方法を用いなければならないことが判った。最後に、疑似的な3次元体系である2次元RZ計算と2次元XY計算の比較により、制御棒部分挿入状態の中性子束を2次元XYモデルで精度良く計算する方法について検討し、RZ計算で得た制御棒部分挿入時の実効増倍率を良く再現する2次元XY計算での制御棒領域の体積割合を得た。

5 件中 1件目~5件目を表示
  • 1